#if __cplusplus > 199711L #define CompileTimeAssert(condition, message) static_assert(condition, message) #else #define CompileTimeAssert(condition, message) #endif static inline void atomic_pause() { #if defined(__i386__) || defined(__x86_64__) __asm__ __volatile__ ("pause"); #elif defined(__arm__) || defined(__arm64__) #if defined(__ARM_ARCH_5__) || defined(__ARM_ARCH_5T__) || defined(__ARM_ARCH_5E__) || defined(__ARM_ARCH_5TE__) // YIELD instruction is available only for ARMv6K and above. // http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0473j/dom1361289926796.html // Thus we do nothing here. #else __asm__ __volatile__("yield" : : : "memory"); #endif #else #error untested architecture #endif } #ifndef UNITY_ATOMIC_FORCE_LOCKFREE_IMPLEMENTATION # define UNITY_ATOMIC_FORCE_LOCKFREE_IMPLEMENTATION 1 #endif namespace detail { #if UNITY_ATOMIC_USE_CLANG_ATOMICS && UNITY_ATOMIC_USE_GCC_ATOMICS # error Cannot use both Clang and GCC atomic built-ins #elif UNITY_ATOMIC_USE_CLANG_ATOMICS # if !__has_feature(c_atomic) && !__has_extension(c_atomic) # error "missing atomic built-in functions" # endif # define INTERNAL_UNITY_ATOMIC_THREAD_FENCE(memorder) __c11_atomic_thread_fence(memorder) # define INTERNAL_UNITY_ATOMIC_LOAD(ptr, memorder) __c11_atomic_load(ptr, memorder) # define INTERNAL_UNITY_ATOMIC_STORE(ptr, value, memorder) __c11_atomic_store(ptr, value, memorder) # define INTERNAL_UNITY_ATOMIC_EXCHANGE(ptr, value, memorder) __c11_atomic_exchange(ptr, value, memorder) # define INTERNAL_UNITY_ATOMIC_COMPARE_EXCHANGE_STRONG(ptr, oldval, newval, success, fail) __c11_atomic_compare_exchange_strong(ptr, oldval, newval, success, fail) # define INTERNAL_UNITY_ATOMIC_COMPARE_EXCHANGE_WEAK(ptr, oldval, newval, success, fail) __c11_atomic_compare_exchange_weak(ptr, oldval, newval, success, fail) # define INTERNAL_UNITY_ATOMIC_FETCH_ADD(ptr, value, memorder) __c11_atomic_fetch_add(ptr, value, memorder) # define INTERNAL_UNITY_ATOMIC_FETCH_SUB(ptr, value, memorder) __c11_atomic_fetch_sub(ptr, value, memorder) # define INTERNAL_UNITY_ATOMIC_TYPE(type) _Atomic(type) # define INTERNAL_UNITY_ATOMIC_IS_LOCK_FREE(type) __c11_atomic_is_lock_free(sizeof(type)) #elif UNITY_ATOMIC_USE_GCC_ATOMICS # if (__GNUC__ < 4) || (__GNUC__ == 4 && __GNUC_MINOR__ < 7) # error "__atomic built-in functions not supported on GCC versions older than 4.7" # endif # if UNITY_ATOMIC_FORCE_LOCKFREE_IMPLEMENTATION # if __GCC_ATOMIC_INT_LOCK_FREE + 0 != 2 || __GCC_ATOMIC_LLONG_LOCK_FREE + 0 != 2 # error "atomic ops are not lock-free for some required data types" # endif # endif # define INTERNAL_UNITY_ATOMIC_THREAD_FENCE(memorder) __atomic_thread_fence(memorder) # define INTERNAL_UNITY_ATOMIC_LOAD(ptr, memorder) __atomic_load_n(ptr, memorder) # define INTERNAL_UNITY_ATOMIC_STORE(ptr, value, memorder) __atomic_store_n(ptr, value, memorder) # define INTERNAL_UNITY_ATOMIC_EXCHANGE(ptr, value, memorder) __atomic_exchange_n(ptr, value, memorder) # define INTERNAL_UNITY_ATOMIC_COMPARE_EXCHANGE_STRONG(ptr, oldval, newval, success, fail) __atomic_compare_exchange_n(ptr, oldval, newval, false, success, fail) # define INTERNAL_UNITY_ATOMIC_COMPARE_EXCHANGE_WEAK(ptr, oldval, newval, success, fail) __atomic_compare_exchange_n(ptr, oldval, newval, true, success, fail) # define INTERNAL_UNITY_ATOMIC_FETCH_ADD(ptr, value, memorder) __atomic_fetch_add(ptr, value, memorder) # define INTERNAL_UNITY_ATOMIC_FETCH_SUB(ptr, value, memorder) __atomic_fetch_sub(ptr, value, memorder) # define INTERNAL_UNITY_ATOMIC_TYPE(type) type # if __GNUC__ >= 5 // GCC pre-5 did not allow __atomic_always_lock_free in static expressions such as CompileTimeAssert // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=62024 # define INTERNAL_UNITY_ATOMIC_IS_LOCK_FREE(type) __atomic_always_lock_free(sizeof(type), 0) # else # define INTERNAL_UNITY_ATOMIC_IS_LOCK_FREE(type) true # endif #else # error One of UNITY_ATOMIC_USE_CLANG_ATOMICS or UNITY_ATOMIC_USE_GCC_ATOMICS must be defined to 1 #endif inline int MemOrder(memory_order_relaxed_t) { return __ATOMIC_RELAXED; } inline int MemOrder(memory_order_release_t) { return __ATOMIC_RELEASE; } inline int MemOrder(memory_order_acquire_t) { return __ATOMIC_ACQUIRE; } inline int MemOrder(memory_order_acq_rel_t) { return __ATOMIC_ACQ_REL; } inline int MemOrder(memory_order_seq_cst_t) { return __ATOMIC_SEQ_CST; } int MemOrder(...); // generate link error on unsupported mem order types #define INTERNAL_UNITY_ATOMIC_TYPEDEF(nonatomic, atomic) \ typedef INTERNAL_UNITY_ATOMIC_TYPE(nonatomic) atomic; \ CompileTimeAssert(!UNITY_ATOMIC_FORCE_LOCKFREE_IMPLEMENTATION || INTERNAL_UNITY_ATOMIC_IS_LOCK_FREE(atomic), #atomic " is not lock-free on this platform") INTERNAL_UNITY_ATOMIC_TYPEDEF(non_atomic_word, native_atomic_word); INTERNAL_UNITY_ATOMIC_TYPEDEF(non_atomic_word2, native_atomic_word2); INTERNAL_UNITY_ATOMIC_TYPEDEF(int, native_atomic_int); #if UNITY_ATOMIC_FORCE_LOCKFREE_IMPLEMENTATION CompileTimeAssert(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4 + 0, "requires 32bit CAS"); CompileTimeAssert(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8 + 0, "requires 64bit CAS"); # if __SIZEOF_POINTER__ == 8 CompileTimeAssert(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_16 + 0, "requires 128bit CAS"); # endif #endif #undef INTERNAL_UNITY_ATOMIC_TYPEDEF inline native_atomic_word* AtomicPtr(atomic_word* p) { return reinterpret_cast(p); } inline volatile native_atomic_word* AtomicPtr(volatile atomic_word* p) { return reinterpret_cast(p); } inline native_atomic_word2* AtomicPtr(atomic_word2* p) { return reinterpret_cast(&p->v); } inline volatile native_atomic_word2* AtomicPtr(volatile atomic_word2* p) { return reinterpret_cast(&p->v); } inline non_atomic_word* NonAtomicPtr(atomic_word* v) { return v; } // same as above: inline non_atomic_word* NonAtomicPtr(non_atomic_word* v) { return v; } inline non_atomic_word2* NonAtomicPtr(atomic_word2* v) { return &v->v; } inline non_atomic_word2* NonAtomicPtr(non_atomic_word2* v) { return v; } inline non_atomic_word NonAtomicValue(atomic_word v) { return v; } // same as above: inline non_atomic_word NonAtomicValue(non_atomic_word v) { return v; } inline non_atomic_word2 NonAtomicValue(atomic_word2 v) { return v.v; } inline non_atomic_word2 NonAtomicValue(non_atomic_word2 v) { return v; } inline atomic_word UnityAtomicValue(non_atomic_word v) { return v; } inline atomic_word2 UnityAtomicValue(non_atomic_word2 v) { atomic_word2 r; r.v = v; return r; } #ifdef UNITY_ATOMIC_INT_OVERLOAD inline native_atomic_int* AtomicPtr(int* p) { return reinterpret_cast(p); } inline volatile native_atomic_int* AtomicPtr(volatile int* p) { return reinterpret_cast(p); } inline int* NonAtomicPtr(int* v) { return v; } inline int NonAtomicValue(int v) { return v; } inline int UnityAtomicValue(int v) { return v; } #endif template struct Identity { typedef T type; }; } // namespace detail template static inline void atomic_thread_fence(MemOrder memOrder) { INTERNAL_UNITY_ATOMIC_THREAD_FENCE(detail::MemOrder(memOrder)); } template static inline T atomic_load_explicit(const volatile T* p, MemOrder memOrder) { return detail::UnityAtomicValue(INTERNAL_UNITY_ATOMIC_LOAD(detail::AtomicPtr(const_cast(p)), detail::MemOrder(memOrder))); } template static inline void atomic_store_explicit(volatile T* p, typename detail::Identity::type v, MemOrder memOrder) { INTERNAL_UNITY_ATOMIC_STORE(detail::AtomicPtr(p), detail::NonAtomicValue(v), detail::MemOrder(memOrder)); } template static inline T atomic_exchange_explicit(volatile T* p, typename detail::Identity::type v, MemOrder memOrder) { return detail::UnityAtomicValue(INTERNAL_UNITY_ATOMIC_EXCHANGE(detail::AtomicPtr(p), detail::NonAtomicValue(v), detail::MemOrder(memOrder))); } template static inline bool atomic_compare_exchange_weak_explicit(volatile T* p, T* oldval, typename detail::Identity::type newval, MemOrderSuccess memOrderSuccess, MemOrderFail memOrderFail) { return INTERNAL_UNITY_ATOMIC_COMPARE_EXCHANGE_WEAK(detail::AtomicPtr(p), detail::NonAtomicPtr(oldval), detail::NonAtomicValue(newval), detail::MemOrder(memOrderSuccess), detail::MemOrder(memOrderFail)); } template static inline bool atomic_compare_exchange_strong_explicit(volatile T* p, T* oldval, typename detail::Identity::type newval, MemOrderSuccess memOrderSuccess, MemOrderFail memOrderFail) { return INTERNAL_UNITY_ATOMIC_COMPARE_EXCHANGE_STRONG(detail::AtomicPtr(p), detail::NonAtomicPtr(oldval), detail::NonAtomicValue(newval), detail::MemOrder(memOrderSuccess), detail::MemOrder(memOrderFail)); } template static inline T atomic_fetch_add_explicit(volatile T* p, typename detail::Identity::type v, MemOrder memOrder) { return detail::UnityAtomicValue(INTERNAL_UNITY_ATOMIC_FETCH_ADD(detail::AtomicPtr(p), detail::NonAtomicValue(v), detail::MemOrder(memOrder))); } template static inline T atomic_fetch_sub_explicit(volatile T* p, typename detail::Identity::type v, MemOrder memOrder) { return detail::UnityAtomicValue(INTERNAL_UNITY_ATOMIC_FETCH_SUB(detail::AtomicPtr(p), detail::NonAtomicValue(v), detail::MemOrder(memOrder))); } /* * extensions */ static inline void atomic_retain(volatile int* p) { atomic_fetch_add_explicit(p, 1, memory_order_relaxed); } static inline bool atomic_release(volatile int* p) { // Both paths here should be correct on any platform // On architectures where read-modify-write with memory_order_acq_rel is more expensive than memory_order_release // the idea is to use a global memory_order_acquire fence instead, but only when the reference count drops to 0. // Only then the acquire/release synchronization is needed to make sure everything prior to atomic_release happens before running a d'tor. #if defined(__arm__) || defined(__arm64__) bool res = atomic_fetch_sub_explicit(p, 1, memory_order_release) == 1; if (res) { atomic_thread_fence(memory_order_acquire); } return res; #else return atomic_fetch_sub_explicit(p, 1, memory_order_acq_rel) == 1; #endif } #undef INTERNAL_UNITY_ATOMIC_THREAD_FENCE #undef INTERNAL_UNITY_ATOMIC_LOAD #undef INTERNAL_UNITY_ATOMIC_STORE #undef INTERNAL_UNITY_ATOMIC_EXCHANGE #undef INTERNAL_UNITY_ATOMIC_COMPARE_EXCHANGE_STRONG #undef INTERNAL_UNITY_ATOMIC_COMPARE_EXCHANGE_WEAK #undef INTERNAL_UNITY_ATOMIC_FETCH_ADD #undef INTERNAL_UNITY_ATOMIC_FETCH_SUB #undef INTERNAL_UNITY_ATOMIC_TYPE #undef INTERNAL_UNITY_ATOMIC_IS_LOCK_FREE